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Manual Control of Phragmites australis
in Freshwater Ponds of Cape Cod
National Seashore, Massachusetts, USA

STEPHEN M. SMITH!

INTRODUCTION

The non-native, invasive genotype of the common reed
(Phragmites australis (Cav.) Trin. ex Steudel) has become a
problem of significant proportions throughout wetlands of
North America (Saltonstall 2001). Although attempts to sup-
press or eradicate Phragmites have utilized a wide variety of
techniques, herbicides have generally been most effective
(Marks et al. 1994). However, their use may be infeasible due
to policy, political, or ecological concerns and alternative
techniques are often sought.

In non-tidal, freshwater environments, Phragmites may oc-
casionally experience lengthy periods of flooding. Although
well-adapted for growth in anaerobic substrates, extreme
flooding results in increased metabolic demands associated
with the transport of oxygen from aerial parts to the roots
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(McKee et al. 1989). In 2003, Cape Cod experienced record
amounts of rainfall that resulted in extremely high water lev-
els. In the spring, mid-summer, and late summer of that year
we attempted to opportunistically control Phragmites in five
freshwater ponds within Cape Cod National Seashore
(CCNS) by repeatedly severing stems underwater, at ground
level. Based on previous studies on the effects of underwater
cutting (Husak 1978, Weisner and Graneli 1989, Hellings
and Gallagher 1992, Rolletschek et al. 1998, 1999, Rollet-
schek and Hartzendorf 2000, Asaeda et al. 2003), we hypoth-
esized that the stress of root oxygen deprivation and forced
depletion of carbohydrate reserves during re-growth might
be sufficient to induce substantial mortality in this particular
setting.

MATERIALS AND METHODS

Five freshwater ponds within CCNS that had been invaded
by Phragmites (Long, Round, Snow, Ryder, and Great) were
randomly selected for treatment. Since there were no other
spatially discrete stands of Phragmites that could serve as within-
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At each site, three permanent 0.25 m? sampling plots were
randomly established within each stand and marked with
PVC pipe. Because the study was begun in the early spring of

pond controls, untreated populations at nearby Bennett and
Herring Ponds were also monitored to assess how water level
alone may have influenced growth during the study period.
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Figure 1. Changes in Phragmites live stem densities (histograms corresponding to left y-axis) following repeated underwater removal of stems and mean
water levels (line graph corresponding to right y-axis) in plots (GS-02 = calculated values for the growing season of 2002; histograms with shared letters are
statistically equal and vice versa; error bars represent standard error of the mean).
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2003 (when no live stems were present) estimates of pre-
treatment live stem densities were obtained by dividing the
total number of over-wintering (dead) stems by three (i.e.,
one third of the stems were assumed to be live stems from
2002, the other two thirds represent growth from 2001 and
2000). For the reference stands, the entire population of
dead stems was assumed to represent the live stem popula-
tion during 2002, even though in reality some portion was
from 2001. In this way, estimates would err on the high side,
increasing the probability that even minor reductions from
high water conditions would be detected.

On April 3, 2003, following the acquisition of data on ini-
tial stand characteristics, all Phragmites stems in each popula-
tion were manually broken underwater and removed from
the ponds. This was accomplished by grasping the stem with
both hands and kicking sideways, which snaps the stem off
near or at its base—a method that actually proved easier
than using cutting tools. Removal treatments were repeated
on June 9 and September 1, 2003. Prior to each treatment
and in the following growing season (2004) live stem densi-
ties were enumerated directly and water depths within each
permanent plot were recorded with a meter stick.

In addition to plot data, the circumference (c) of each
treatment stand was measured to the nearest meter and
stand size calculated as 7(c/2m)? To estimate the initial pop-
ulation of live stems on an entire stand basis, mean stem den-
sities from the permanent plots (number of live stems/m?)
were multiplied by stand area. Subsequently, all re-growing
stems were counted, with the exception of the untreated
Herring Pond stand where, due to its large size, the final
stem total also was determined indirectly as described above.

To analyze treatment effects within each pond, log-trans-
formed stem density values were compared along the time-
line of the study using one-way Analysis of Variance
(ANOVA) followed by Tukey’s Tests (0. = 0.05).

RESULTS AND DISCUSSION

In March, more than 30 cm of water covered the plots in
all the ponds. Water levels continued to rise until the end of
June (Figure 1), after which a steady decline occurred. The
following spring maxima were much lower than in 2003. By
the end of the study period (July 2004) the plots at Round,
Snow, and Bennett Pond had gone dry, whereas all others
had water depths between 0 (Long Pond) and 43 cm (Her-
ring Pond).

Approximately 1.5 years after initial treatment, Phragmites
was absent from all plots in Great, Ryder, and Round Pond
(Figure 1). Re-growth occurred in one plot at Snow Pond but
stem densities were significantly lower than in July 2003 and
the previous growing season. In Long Pond, stem densities in
July 2004 were statistically different only from pre-treatment
values. In the two reference stands, live stem densities in-
creased although the changes were not statistically signifi-
cant. With respect to whole stands, large reductions in the
total number of stems occurred at all but the reference sites
(Figure 2). Long and Round Ponds showed the least amount
of decline (<70%), while populations in Snow, Great, and Ry-
der Pond decreased by >90% (Figure 1). Phragmites at Her-
ring Pond showed very little change in the estimated number
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Figure 2. Number of live stems within whole stands before and after treat-
ment (percent values indicate increase or decrease in total population size;
GS-02 = calculated values for the growing season of 2002).

of total stems, while Bennett Pond (an incipient population)
increased by 43%.

In conclusion, repeated underwater breakage and remov-
al of stems significantly reduced Phragmites population size
the following year. No stems re-emerged in 12 out of 15 per-
manent plots while reductions in total stand size ranged be-
tween 59% and 99%. The changes are the direct result of
removal treatments since high water levels alone did not re-
duce stem densities in either of the reference stands. In the
absence of such treatment, periods of deep water alone are
likely to result in phenotypic changes or reduced rates of ex-
pansion rather than a general population decline (Clevering
1998, Cross and Flemming 2000, Vretare et al. 2001, Wilcox
et al. 2003).

In the five CCNS ponds where Phragmites was treated, wa-
ter covered the tops of the broken stems long enough to in-
duce substantial mortality. Thus, a prolonged period of high
water appears to be a pre-requisite for success in using this
method. It stands to reason, however, that populations span-
ning a greater elevation range may be more difficult to con-
trol since individuals at the upland edge may experience very
shallow water or no flooding at all. In this study, plants that
grew back were typically those at the highest elevations. In
general, there are a variety of factors, both logistical and eco-
logical, that can influence the success of this control meth-
od. As such, further studies on success and failure rates from
diverse settings and conditions would be of considerable val-
ue in further evaluating and improving this technique.
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